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Abstract. A key goal of quantitative ethnographic (QE) models, and statistical 
models more generally, is to produce the most parsimonious model that 
adequately explains or predicts the phenomenon of interest. In epistemic network 
analysis (ENA), for example, this entails constructing network models with the 
fewest number of codes whose interaction structure provides sufficient 
explanatory power in a given context. Unlike most statistical models, however, 
modification of ENA models can affect not only the statistical properties but also 
the interpretive alignment between quantitative features and qualitative meaning 
that is a central goal in QE analyses. In this study, we propose a novel method, 
Parsimonious Removal with Interpretive Alignment, for systematically 
identifying more parsimonious ENA models that are likely to maintain 
interpretive alignment with an existing model. To test the efficacy of the method, 
we implemented it on a well-studied dataset for which there is a published, 
validated ENA model, and we show that the method successfully identifies 
reduced models likely to maintain explanatory power and interpretive alignment.  

Keywords: Model Comparison, Model Refinement, Unified Methods, 
Epistemic Network Analysis (ENA), Interpretive Alignment. 

1 Introduction 

Quantitative ethnography (QE) is a method for studying cultural and behavioral 
patterns that facilitates thick description of qualitative data at scale [8]. To do this, QE 
unifies qualitative and quantitative approaches with the goal of achieving interpretive 
alignment between qualitative meaning-making and the features of quantitative models. 
For example, epistemic network analysis (ENA), a widely used QE technique, models 
the structure of connections among key concepts, behaviors, or other elements (i.e., 
Codes) to represent complex phenomena [9]. Critically, ENA maintains linkages 
between model features (i.e., weighted connections between Codes) and the original 
qualitative data that produced them, enabling researchers to warrant interpretive 
alignment.  

However, a model that achieves interpretive alignment might not be the most 
parsimonious one. In statistics, model parsimony is often operationalized as the 
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inclusion of the fewest number of variables that sufficiently explain or predict the 
phenomenon of interest [7]. The variables in an ENA model are the connections among 
Codes, but because QE unifies qualitative and quantitative perspectives, the most 
parsimonious ENA model is not necessarily the model with the fewest Codes. Rather, 
parsimony in ENA involves constructing a model with the fewest Codes that maintains 
both explanatory power and interpretive alignment. 

To identify the most parsimonious ENA model while maintaining interpretive 
alignment, QE researchers typically take a trial-and-error approach. However, this 
process involves iterative confirmation across qualitative and quantitative perspectives, 
and there is no reliable method for determining whether two ENA models with different 
Codes have equivalent explanatory power. 

To address this challenge in QE model refinement, we propose a novel method, 
parsimonious removal with interpretive alignment (PRIA), for removing Codes to 
identify more parsimonious models likely to maintain interpretive alignment. We tested 
this method on a well-studied dataset for which there are published QE findings, and 
our results suggest that the PRIA method can reliably find the most parsimonious ENA 
model that maintains explanatory power. While researchers still need to verify 
interpretive alignment, PRIA provides a principled method for testing the effects of 
removing one or more Codes from an existing model. 

2 Theory 

2.1 Properties of QE Models 

Quantitative ethnography unifies ethnographic and computational methods to 
understand culture, behavior, cognition, and other aspects of human activity at scale. 
Unlike mixed method studies, in which the qualitative and quantitative analyses are 
only minimally interdependent, QE studies generate thick descriptions of big data using 
processes that “inseparably” combine qualitative and quantitative approaches [8].  

For example, one frequently-used modeling technique in QE is epistemic network 
analysis (ENA). ENA models the structure of connections among Codes by quantifying 
the co-occurrence of Codes within recent temporal context. ENA analyses begin when 
researchers perform a close reading of some discourse data to generate theories about 
the situated meaning of events, which are then operationalized as Codes. ENA 
constructs network graphs of the coded data that can be used to explore hypotheses 
about the relationships among them, as well as summary statistics that can be used to 
compare the relationships among Codes statistically. Then researchers close the 
interpretive loop [8], validating the features of the model by re-examining the original 
data that contributed to those features. 

In particular, ENA supports the unification of qualitative and quantitative methods 
in at least five ways. ENA models: 

1. Represent the connections among Codes that were developed and validated by 
researchers grounded in the empirical data.  
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2. Generate an ENA score in a projected metric space. ENA score is defined as a 
summative measure for an individual network that can be used to conduct 
statistical tests. 

3. Position nodes in the ENA space such that network graphs can be used to 
interpret the meaning of ENA scores in terms of the network structures they 
represent.  

4. Provide a goodness of fit measure that indicates how well the projected metric 
space and weighted network models are coordinated. High goodness of fit 
indicates that the network graphs provide a reliable interpretation of the 
dimensions of the projected metric space. 

5. Preserve the interpretive alignment between quantitative features (statistical 
significance between groups and interpretation of the dimensions based on node 
positions) and a qualitative understanding of the data.   

For example, [10] explored collaborative problem-solving in a military training 
exercise on air defense warfare, using qualitative analysis on the discourse data and 
ENA to model the patterns in discourse. They compared the behavior of commanders 
with and without access to a tactical scaffolding system, which provided detailed 
information about tracks (ships and aircraft detected on radar) and a record of actions 
taken toward them. [10] found that commanders without access to the scaffolding 
system focused more on seeking information about behaviors of incoming aircraft to 
understand the tactical situation; commanders using the scaffolding system integrated 
information about the tactical situation to issue deterrent orders. The ENA space they 
created showed that network nodes for information seeking were on the negative side 
of the first dimension of the ENA space, and commanders working without the 
scaffolding system had low values on that dimension. Network nodes for tactical 
decision making were on the positive side of the first dimension, and commanders 
working with the scaffolding system had high values on that dimension. There was a 
statistically significant difference between commanders in the control and experimental 
conditions on the first dimension of the ENA space. Thus, the interpretation derived 
from the quantified ENA model was consistent with the situated hypothesis and Code 
generation based on thick description of the discourse data.  

2.2 Model Parsimony 

A common challenge that researchers face when using ENA is deciding whether one or 
more codes can be removed from a model without affecting interpretive alignment. For 
example, researchers may construct a model in which one or more Codes—or more 
specifically, the connections involving one or more Codes—do not provide significant 
explanatory or discriminative power. That is, the model refinement process may 
involve exploring whether a more parsimonious model can be constructed that does not 
change the interpretation of the data, but that tells the story more clearly by removing 
Codes that do not play a significant role in the model. However, the unification of 
qualitative and quantitative methods in QE poses a particular challenge for refining QE 
models in this way.  
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In statistics, parsimony—the idea that a model is better when fewer variables have 
the same explanatory power—is one of the most important factors in model selection 
and evaluation. As [11] argue, the primary benefit of a more parsimonious model is that 
it increases the predictive power by better distinguishing the signal from noise. 
Parsimony balances variance explained and model complexity, and reduces the 
likelihood of overfitting, or over-parametrization in model selection [6].  

However, [2] examined studies of qualitative parsimony and failed to find a 
universal definition due to the complexity and diversity of social science research. 
Although they claimed that “one ‘size’ of parsimony does not appear to fit all 
qualitative methods” (p. 1403), parsimony involves the simplest expressions of 
qualitative findings grounded in thick description.  

The problem for QE researchers is that unlike pure statistical models, which can be 
reduced to the most parsimonious form by systematically removing variables until the 
amount of variance explained drops too low [7], modification of QE models can affect 
not only the statistical properties of a model but also the interpretive alignment between 
quantitative features and qualitative meaning that is a central goal in QE analyses. 

From a QE perspective, then, parsimony needs to unify two points of view. From a 
quantitative perspective, a parsimonious model needs to involve the fewest parameters 
or variables to achieve the same level of explanatory power. Connections between 
Codes are the variables in an ENA model, so the more parsimonious ENA model thus 
has fewer Codes (and hence, fewer connections). From an ethnographic perspective, 
QE researchers are concerned with capturing the “right” amount detail to explain the 
phenomenon at hand. Adding more Codes does not always provide a better or more 
clear interpretation of events, and in fact can obscure the most central features of a 
situation.  

2.3 Current Approach to Identifying Parsimonious ENA Models 

In practice, researchers using ENA take an exploratory approach to refining models, 
trying to achieve parsimony while maintaining explanatory power and interpretive 
alignment. Typically, researchers examine their existing “best” model to determine 
whether one or more Codes are contributing significantly to meaningful interpretation. 
Codes that are weakly connected, especially those located toward the center of the 
model, are a common target for removal. A researcher selects one or more Codes to 
remove, produces a deflated model, and then checks whether the deflated model 
maintains (a) high goodness of fit, (b) statistical significance, and (c) interpretive 
alignment. Needless to say, this process is time-consuming, and there is no extant 
technique for comparing two models with different Codes in a principled way.  

2.4 The PRIA Approach to Identifying More Parsimonious ENA 
Models 

To address this issue, we propose a method, Parsimonious Removal with Interpretive 
Alignment (PRIA), to identify deflated models that are likely to maintain explanatory 
power and interpretive alignment. This method has five steps: 
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Step 1: Generate deflated models. We construct a set of deflated models by generating 
all possible ENA models with fewer codes using the same parameters as the original 
model. 
Step 2: Determine which deflated models have high goodness of fit. We conduct a 
goodness of fit test on all deflated models, which measures the extent to which the 
interpretation of dimensions is reliable. 
Step 3: Correlate ENA scores. We compute the correlation of ENA scores between 
each deflated model and the original model. This correlation measures the extent to 
which the summary statistics for individual units of analysis in the deflated model vary 
from the original model. 
Step 4. Correlate node positions. We compute the correlation of node positions 
between each deflated model and the original model. Node positions are used to 
interpret the meaning of ENA scores in terms of the network structures they represent. 
A high correlation of the node positions between the deflated model and the original 
model suggests that the underlying patterns described by the networks are aligned. 
Step 5: Confirm interpretive alignment for candidate models. Deflated models that 
pass tests for goodness of fit and correlation of ENA scores and node positions become 
candidate models. We sort the set of candidate models by the number of codes removed, 
from most codes removed to least. Then, we check interpretive alignment one candidate 
model at a time until we find the most parsimonious model that has good interpretive 
alignment. To ensure that interpretive alignment is conserved, we examine each 
candidate model from two perspectives: 

1. From the quantitative perspective, we re-run any statistical tests from the 
original model to determine whether differences remain significant. 
Additionally, we examine the network graphs to verify that the node positions 
preserve the interpretation of the dimensions. 

2. From the qualitative perspective, we once again close the interpretive loop, re-
examining the original data to see if it is aligned with the candidate model.  

The candidate model with the most codes removed that meets these alignment 
criteria becomes the reduced model. 

2.5 Data and Research Questions 

We thus propose five steps for generating a reduced model and confirming interpretive 
alignment. To examine the feasibility of PRIA, we analyzed a dataset collected from 
the Tactical Decision Making Under Stress (TADMUS) project [1]. We chose this 
dataset because prior work has developed and validated a coding scheme and ENA 
models [10]. In what follows, we use this data to address the following research 
questions:  

1. Can candidate models be constructed that have high goodness of fit, ENA score 
correlation, and node position correlation? 

2. Do any of the candidate models preserve the statistical results of the original? 
3. Do any of the candidate models preserve the interpretation of the dimensions of 

the original?  
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4. Are any of the candidate models that meet all of the above criteria also well 
aligned with the original data?  

3 Method 

3.1 Dataset and Codebook 

In this study, we tested the Code removal procedure using data collected in the 
TADMUS project. The dataset includes the discourse of 16 Navy Air Defense Warfare 
(ADW) teams working collaboratively to make tactical decisions in a military training 
simulation [4]. In these training simulations, teams were tasked with identifying, 
tracking, and assessing potentially hostile air or surface vessels called tracks. Each team 
consisted of up to six members, two in command roles, and four in supporting roles. 
Those in command roles made tactical decisions based on the information reported by 
the supporting members of the team. A decision-support system was developed to 
scaffold the decision-making process of the commanders by providing detailed 
information about tracks and a record of actions taken toward them [3]. To test the 
effectiveness of the system, eight teams were randomly assigned to the experimental 
group, who had access to the support system, while the other eight teams were assigned 
to the control group, with access only to the regular watch station. The regular watch 
station is a device that provides basic tracking and identification information. In this 
study, we made use of the discourse data for each team in the training project for 94 
participants. The transcripts of their discourse are segmented to 12,027 turns of talk in 
total. 

Table 1. Codes, Definitions, and Examples Developed by [10] 

Code Definition Examples 

DETECT/IDENTIFY (DI) 
Talk about radar detection of a 
track or the identification of a 
track, (e.g., vessel type). 

IR/EW NEW BEARING, 
BEARING 078 APQ120 
CORRELATES TRACK 7036 
POSSIBLE F-4. 

   

TRACK BEHAVIOR (TB) 
Talk about kinematic data 
about a track or a track’s 
location 

AIR/IDS TRACK NUMBER 
7021 DROP IN ALTITUDE 
TO 18 THOUSAND FEET 

   

ASSESSMENT (A) 

Talk about whether a track is 
friendly or hostile, the threat 
level of a track, or indicating 
tracks of interest. 

TRACKS OF INTEREST 
7013 LEVEL 5 7037 LEVEL 
5 7007 LEVEL 4 TRACK 
7020 LEVEL 5 AND 7036 
LEVEL 5 
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STATUS UPDATES (SU) 

Talk about procedural 
information, e.g., track 
responses to tactical actions, or 
talk about tactical actions taken 
by the team 

TAO ID, STILL NO 
RESPONSE FROM TRACK 
37, POSSIBLE PUMA HELO. 

   

SEEKING INFORMATION (SI) 
Asking questions regarding 
track behavior, identification, 
or status. 

TAO CO, WE'VE 
UPGRADED THEM TO 
LEVEL 7 RIGHT? 

   

RECOMMENDATIONS (R) Recommending or requesting 
tactical actions 

AIR/TIC RECOMMEND 
LEVEL THREE ON TRACK 
7016 7022 

   

DETERRENT ORDERS (DTO) 
Giving orders meant to warn or 
deter tracks.  

TIC AIR, CONDUCT LEVEL 
2 WARNING ON 7037 

   

DEFENSIVE ORDERS (DFO) 
Giving orders to prepare ship 
defenses or engage hostile 
tracks 

TAO/CO COVER 7016 WITH 
BIRDS 

 
We adopted this dataset and coding scheme because the Codes were grounded in the 
qualitative understanding of researchers familiar with the data, and automated 
classifiers were developed validated by two expert human raters. To understand the 
differences in team discourse with and without the supporting system, [10] analyzed 
the transcripts and developed the eight behavior codes in Table 1. For each code, 
pairwise inter-rater reliability between two human raters and the automated classifier 
was Cohen’s κ > 0.84 and Shaffer’s ρ(0.65) < 0.05, indicating that all codes met a 
minimum threshold of κ = 0.65. 

3.2 Epistemic Network Analysis 

Using the same parameters reported in [10], ENA models were constructed with 
participants subdivided into training scenarios as the units, scenario as the conversation 
variable, and a moving window of 5 turns of talk, using rENA 0.2.0.1 [5]. We included 
all eight codes listed in Table 1. To create a projected ENA space, we used a means 
rotation to maximize the differences between control and experimental conditions, 
followed by a singular value decomposition, to define the first and second dimensions, 
respectively, of the projected metric space. On the other hand, we calculate the 
arithmetic means of the network edges, defined as centroids. To test the reliability of 
the interpretation on the means rotation dimension, we computed the goodness of fit 
using Pearson’s r between the ENA scores with centroids for the same individual (r = 
0.95).  
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3.3 Code removal Procedure and Criteria 

As described above in the theory section, we constructed all possible reduced models 
by extracting potential combinations of code removal1. Then, we measured each one 
on three criteria: (a) its goodness of fit, (b) the correlation of its ENA scores with the 
original model, and (c) the correlation of its node positions with the original model (see 
Table 2). Then, we compared the computed correlations (Criteria 1-3 in Table 2) with 
a given threshold, 0.95. Deflated models significantly above the threshold on all three 
criteria were classed as candidate models, which were rank-ordered by number of 
codes, with the model having the least number of codes listed first. 

Table 2. Goals and Criteria for Generating Deflated Models 

Goals  Criteria 
Model Fitting The interpretation of 

dimensions is reliable. 
 Criterion 1: Goodness of Fit for 

deflated model 
Model  
Alignment 

The interpretation of 
individuals is aligned with the 
original model.  

 Criterion 2: Correlation of 
ENA scores between the 
original and deflated models 
 

 The interpretation of 
dimensions is aligned with the 
original model. 

 Criterion 3: Correlation of node 
positions between the original 
and deflated models 
 

 
To ensure that the interpretation of dimensions in a deflated model is reliable, we 
computed the goodness of fit by calculating the pairwise correlation (Pearson’s r) of 
the ENA scores with their corresponding network centroids. We then calculated the 
95% confidence interval (C.I.) and compared the lower bound of the C.I. with the 
threshold of 0.95 (Criterion 1), to maintain the same goodness of fit as the original 
model. If the lower bound is above the threshold, the fit of the deflated model is 
significantly higher than the threshold, which indicates that the deflated model is well 
fitted and reliable for interpretation. Of the deflated models that satisfied Criterion 1, 
we selected deflated models whose ENA scores and node positions are highly 
correlated with the original model (Criteria 2 and 3). High correlation of ENA scores 
indicates that the interpretation of the individuals in the model is consistent with the 
original model, and high correlation of node positions maintain the interpretation of the 
dimensions in the network. We calculated the C.I. of correlations for both ENA scores 
and node positions between each deflated model and original model and returned the 
deflated models whose lower bounds of the C.I. were above the threshold. The models 
that satisfied all criteria were considered candidate models, and we sorted them by the 
number of Codes removed.  

 
1 In this study, the original model includes eight Codes. We took combination of k Codes (k = 1, 

2, …, 5) to be removed from the original model. The maximum value of k is 5 since ENA 
needs at least three Codes to be constructed.  
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After the PRIA algorithm output the candidate models, we confirmed the statistical 
results and interpretive alignment of the most parsimonious candidate model. To do 
this, we first determined whether there is a significant difference between the two 
conditions on the first dimension of the candidate model, using two-sample t-test. We 
then checked the interpretation of the first dimension based on the locations of the nodes 
to determine whether it was consistent with the original model. Lastly, we compared 
the transcripts of two teams in the same training scenario that had similar tactical 
decision-making processes and results, except that one team’s discourse contained a 
removed Code and the other team’s discourse did not. The first candidate model to 
achieve interpretive alignment was confirmed as the reduced model. 

4 Results 

4.1 Code Removal Results 

Of the 218 possible deflated models, the PRIA algorithm returned 3 that satisfied 
Criteria 1-3 (see Table 3). The three candidate models in Table 3 all have a high 
goodness of fit and high correlations of ENA scores and node coordinates with the 
original model. We chose the candidate model with most Codes removed to assess first 
for interpretive alignment. The model includes five Codes: “Seeking Information”, 
“Detect/Identify”, “Track Behavior”, “Status Updates”, and “Deterrent Orders.  

Table 3. Candidate models with correlations (confidence intervals) significantly higher than 
0.95 

Codes Removed 
C1: Goodness 

of Fit 
C2: Correlation 
of ENA Scores 

C3: Correlation 
of Node 
Positions 

Number of 
Codes 

Removed 
Assessment, 

Defensive Order, 
Recommendation 

0.9562 
(0.9556, 0.9567) 

0.961 
(0.953, 0.9677) 

0.9986 
(0.9785, 0.9999) 

3 

Defensive Order, 
Recommendation 

0.957 
(0.9564, 0.9575) 

0.9738 
(0.9683, 0.9783) 

0.9997 
(0.9968, 1) 

2 

Defensive Order 
0.9511 

(0.9505, 0.9517) 
0.9953 

(0.9943, 0.9961) 
0.9985 

(0.9892, 0.9998) 
1 

4.2 Quantitative Confirmation 

To compare the original model and the most parsimonious candidate model, we plotted 
both models (see Fig. 1). We examined whether the model interpretation changed in 
the following two respects: 1) statistical comparison of the two conditions; 2) network 
interpretation based on the node positions. 



10 

Statistical Testing between Conditions. In the original model, there is a significant 
difference between the control condition (Mean = −0.25, N = 211) and the experimental 
condition (Mean = 0.25, N = 211) according to a two-sample t-test (t = 10.52, p < 0.005, 
d = 1.02) on the first (means rotated) dimension. In the candidate model, there is a 
significant difference between the control condition (Mean = −0.27, N = 211) and the 
experimental condition (Mean = 0.27, N = 211) according to a two-sample t-test 
(t = 9.36, p < 0.005, d = 0.91). Thus, the most parsimonious candidate model maintains 
the significant difference between the two conditions. 

 

Fig. 1. The Original Model (Left) and the Most Parsimonious Candidate Model (Right) 

Node Positions in ENA. In the original network, Codes related to tactical decision 
making (DETERRENT ORDERS and STATUS UPDATE) are located on the positive side of 
the first dimension, while SEEKING INFORMATION is located on the negative side. In the 
most parsimonious candidate model, the relative location of major Codes along the 
means rotation space are in relative the same positions as the original model.  

4.3 Qualitative Confirmation 

We identified two teams (hereafter, Team 1 and Team 2) working on the same training 
scenario with a similar distribution of ENA scores in the original model. The 
distribution of ENA scores were not significantly different according to a Mann-
Whitney U Test (U= 25, p = 0.31, Cliff’s d = 0.39) and suggest that the two teams made 
similar connections between codes. However, Team 2 made connections between 
ASSESSMENT and other codes, but Team 1 did not. The removal of ASSESSMENT in 
addition to DEFENSIVE ORDER and RECOMMENDATION is what differentiated the most 
parsimonious candidate model from the next most parsimonious one. In the examples 
below, we look at each team at the beginning of a training session involving the same 
potential attack. 
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Example 1: Decision Making without Explicit Assessment of Threats. At the 
beginning of the task, Team 1 is told by the SSES that there is an Iranian F-4 in their 
airspace (“IN VICINITY”) on a training mission (“FOR APPARENT LOCAL 
TRAINING”): 

 
Line Speaker Utterance 
1 
 

SSES TAO/SSES WE HAVE INDICATIONS OF AN IRANIAN F-4 
AIRCRAFT UP IN VICINTIY BUSHEHR AIRBORNE FOR 
APPARENT LOCAL TRAINING. 

 
That is, the SSES points out a plane in the area (DETECT/IDENTIFY) and describes its 
behavior (TRACK BEHAVIOR). 

Almost immediately, the team sees radar contacts for another fighter plane: 
 

Line Speaker Utterance 
2 EWS TIC/EW I HAVE AN APS-115 CORRELATES TO P-3 

BEARING 025. 
3 TAO TRACK 7023 BEARING 025 40M. 
4 TIC EW/TIC WE COPY WE GOT THAT CORRELATED TRACK 

7023. 
5 IDS THIS IS IDS, 7023 NO MODES NO CODES. 

 
In line 2, the Electronic Warfare Supervisor (EWS) identifies it as a P-3 
(DETECT/IDENTIFY) and gives its bearing (TRACK BEHAVIOR). In line 4, the TIC 
designates as “TRACK 7023” (DETECT/IDENTIFY), and in line 5, the IDS reports “NO 
MODES NO CODES” (DETECT/IDENTIFY), indicating that the plane is not responding 
to automatic tracking. In other words, the plane is not identifying itself, and thus could 
be hostile. 

The team subsequently identifies three other radar tracks, and then almost 
immediately (line 14) the EWS acquires the Iranian F-4 on radar (DETECT/IDENTIFY and 
TRACK BEHAVIOR). The TIC marks it as “TRACK 7036” in line 15 and gives its updated 
bearing (DETECT/IDENTIFY and TRACK BEHAVIOR): 

 
Line Speaker Utterance 
14 EWS TIC/EWS APQ-120 BEARING 077 CORRELATES F-1 MIRAGE 

CORRECTION F-4 PHANTOM. 
15 TIC F-4 CORRELATES TO TRACK 7036 BEARING 078 RANGE 

50NM. 
 
Then, the SSES then notifies the team that there are multiple aircraft departing from the 
Iranian coast on the way toward the ship (DETECT/IDENTIFY and TRACK BEHAVIOR). 

 
Line Speaker Utterance 
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16 
 

SSES TAO/SSES WE HAVE INDICATIONS OF MULTIPLE 
AIRCRAFT DEPARTING IRANIAN COAST, EXACT 
COMPOSITION UNKNOWN, LOCATION UNKNOWN. 

 
In other words, the team has taken a series of actions to DETECT/IDENTIFY tracks and 
designate track behavior. Collectively, these actions suggest there are hostile aircraft 
preparing to attack the ship, even though the Iranian F-4 (now TRACK 7036) was 
supposedly on a training mission:  

1. There are multiple planes in the airspace,  
2. At least one of them is not identifying itself (TRACK 7023 has “NO MODES 

NO CODES in line 5), and  
3. There are multiple airplanes departing from Iran toward the ship (line 8). 

In response to this tactical situation, the TAO issues a level 1 warning (DETERRENT 
ORDER, giving orders to warn or deter tracks) for the F-4 (TRACK 7036), which is 
“FEET WET”, or flying from land to the water and approaching the ship: 

 
Line Speaker Utterance 
17 
 

TAO AWC/TAO TRACK 7036 GOING FEET WET ISSUE LEVEL 1 
WARNING PLEASE. 

 
Team 1 thus identified a series of tracks and recorded their behavior, leading the TAO 
to (a) conclude that the tracks were hostile and (b) issue a deterrent order as a “LEVEL 
1 WARNING”. However, this process of deciding to issue a deterrent order does not 
show explicit ASSESSMENT of the threat level of the planes. 

Example 2: Decision Making with Explicit Assessment of Threats. The second 
team, working on the same training scenario, receives the same notification from SSES 
at the beginning of the exercise. The SESS detects an “IRANIAN F-4 AIRCRAFT” 
(DETECT/IDENTIFY) is “IN VICINITY” (TRACK BEHAVIOR): 
 

Line Speaker Utterance 
1 

 
SSES TAO/SSES WE HAVE INDICATIONS OF AN IRANIAN F-4 

AIRCRAFT UP IN VICINTIY BUSHEHR AIRBORNE FOR 
APPARENT LOCAL TRAINING. 

 
The TIC acknowledges the intelligence provided by the SSES and, using that 
information, asks the AWC to investigate a track that might be the F-4: 

 
Line Speaker Utterance 
2 TIC TIC AYE. 
3 TIC AWC/TIC TRACK 7020 WE NEED TO PROBABLY 

INTERROGATE THEM AND SEE IF WE GET ANY EW, THAT 
MIGHT BE THE F-4.   HE'S AT 3,000FT, UH ACTUALLY I 
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TAKE THAT BACK IT'S PROBABLY A HELO AT 80KNTS 
3,000FT THERE ABOUT 40M. 

 
In line 3, the TIC initially identifies “TRACK 7020” as the Iranian F-4 
(DETECT/IDENTIFY), but quickly changes the identification to a helicopter (“IT’S 
PROBABLY A HELO”) based on the TRACK BEHAVIOR, including altitude 
(“3,000FT”), distance (“40M”), and speed (“80KNT”). 

Next, the IDS identifies a new track, TRACK 7023: 
 

Line Speaker Utterance 
4 IDS TIC/IDC TRACK 7023 NO MODES NO CODES. 
5 TIC TAO/TIC 7023 SPEEDING UP AND TURNING WEST.  SHE IS 

ALSO CLIMBING.  SHE IS AT 1800FT RIGHT NOW AND 
TURNING SOUTH ON 239 250KNTS. 

6 IDS TIC/IDC TRACK 7023 UPDATED UNKNOWN ASSUMED 
HOSTILE. 

 
The IDS notes (line 4) that the new track has no radar information indicating whether 
it is friendly or hostile (“NO MODES NO CODES”). Immediately after this 
DETECT/IDENTIFY from the IDS, the TIC (line 5) reports that the track is exhibiting 
unusual TRACK BEHAVIOR, including changing speed (“SPEEDING UP”), direction 
(“TURNING WEST”), and height (“CLIMBING”). Using that information, the IDS 
makes an explicit ASSESSMENT: TRACK 7023 is “ASSUMED HOSTILE” (line 6). 

Soon after, the SSES identifies (line 10) multiple aircraft taking off from the Iranian 
coast “FEET WET” (DETECT/IDENTIFY and TRACK BEHAVIOR): 

 
Line Speaker Utterance 
10 SSES TAO/SSES WE HAVE INDICATIONS OF MULTIPLE 

AIRCRAFT DEPARTING IRANIAN COAST, EXACT 
COMPOSITION UNKNOWN, LOCATION UNKNOWN. 

 
Moments later, given the information from the SSES, the TAO issues “LEVEL 1 
WARNINGS” to Track 7036 (DETERRENT ORDER): 

 
Line Speaker Utterance 
15 TAO AWC/TAO ISSUE LEVEL 1 WARNINGS TO TRACK 7036. 

 
Thus Team 2, like Team 1, identifies a series of tracks and records their behavior, 
leading the TAO to conclude that the tracks are hostile and issue a DETERRENT ORDER—
the same level 1 warning that the TAO from Team 1 ordered.  

Along the way, in Team 2 the IDS makes an explicit ASSESSMENT of the tactical 
situation (line 6). However, this assessment does not appear to have influenced the 
Team’s tactical decision making or behavior: in both teams, the TAO reaches the same 
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conclusion. In other words, although Team 2 makes an explicit ASSESSMENT of the 
situation, it appears that the assessment served only to make explicit the interpretations 
the team was already making—which, in turn, provides qualitative evidence that 
removing the code from the model does not significantly change the model of team 
behavior or our interpretation of it. 

5 Discussion 

In this paper, we proposed the PRIA method and successfully reduced an existing ENA 
model to a more parsimonious model with fewer Codes but equivalent explanatory 
power and interpretive alignment. We propose this method based on five properties of 
ENA that support the unification of qualitative and quantitative approaches. Based on 
each property, we generated corresponding criteria and confirmatory procedures.  

1. ENA models generate the ENA scores, a summative measure for individuals, 
projected as points in the ENA space. PRIA correlates the ENA scores between the 
original model and the reduced model, to ensure the interpretation of individuals 
in the space is maintained. 

2. ENA models provide an interpretation of the dimensions of the ENA space based 
on the node positions. PRIA correlates the original node position between the 
original and the reduced, to ensure the interpretation of dimension is maintained. 

3. ENA models generate a goodness of fit measure to test how well the projected 
metric space and the weighted network models are coordinated—and thus whether 
the interpretation of the dimension is reliable. PRIA computes the goodness of fit 
test on the reduced model to ensure the qualified candidate models are also reliable.  

Based on these properties and criteria, PRIA deflates the original model and 
generates the candidate models with Codes removed that maintain both good model fit 
and alignment with the original model. 

PRIA then has two additional confirmatory procedures that validate the interpretive 
alignment between quantitative metrics (statistical tests and node positions) and 
qualitative analyses.  

4. ENA performs the statistical tests on the ENA scores and enables interpretation of 
those results based on node positions. PRIA performs the same tests on the reduced 
model to confirm significance remained and checks that the node positions in the 
reduced model do not result in a different interpretation from the original model. 

5. ENA closes the interpretive loop by enabling researchers to confirm that the results 
of a model conform to the original qualitative data. PRIA re-closes that loop to 
ensure that the reduced model is consistent with the qualitative data as well.  

We tested the PRIA method on a data from a military training project that already 
had validated Codes and an existing ENA model aligned with qualitative analyses. For 
this data, PRIA suggested it was possible to construct a reduced model with three Codes 
removed that met all of these criteria. 

The PRIA method has some limitations. First, this approach requires an existing 
ENA model, with validated Codes and good interpretive alignment, to generate and 
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evaluate more parsimonious candidate models. That is, the PRIA method provides a 
principled way for researchers to refine an existing validated model, rather than 
providing a technique to automatically generate an optimal model from a large set of 
Codes. Second, we only tested the PRIA method on one dataset. To test the 
generalizability of PRIA method, we will need to conduct the same procedure on other 
datasets with different properties. Finally, we chose an arbitrary threshold of 0.95 for 
our correlation criteria. Methods to determine appropriate minimum thresholds need to 
be developed. 

Despite these limitations, the PRIA method shows that it is possible to generate 
parsimonious reduced models that have good interpretive alignment and explanatory 
power equivalent to the original model. This suggests that the PRIA approach can 
provide a principled method for identifying more parsimonious ENA models.  
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