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Abstract. Models of collaborative learning need to account for interdependence, 

the ways in which collaborating individuals construct shared understanding by 

making connections to one another’s contributions to the collaborative discourse. 

To operationalize these connections, researchers have proposed two approaches: 

(1) counting connections based on the presence or absence of events within a 

temporal window of fixed length, and (2) weighting connections using the 

probability of one event referring to another. Although most QE researchers use 

fixed-length windows to model collaborative interdependence, this may result in 

miscounting connections due to the variability of the appropriate relational 

context for a given event. To address this issue, we compared epistemic network 

analysis (ENA) models using both a window function (ENA-W) and a 

probabilistic function (ENA-P) to model collaborative discourse in an 

educational simulation of engineering design practice. We conducted a pilot 

study to compare ENA-W and ENA-P based on (1) interpretive alignment, (2) 

goodness of fit, and (3) explanatory power, and found that while ENA-P performs 

slightly better than ENA-W, both ENA-W and ENA-P are feasible approaches 

for modeling collaborative learning. 

Keywords: Collaborative Learning, Learning Analytics, Epistemic Network 

Analysis, Modeling Recent Temporal Context, Engineering Education. 

1 Introduction 

A critical element of collaborative learning is that learners co-construct knowledge and 

make cognitive connections both intrapersonally and interpersonally [1]. That is, a 

learner forms links (a) between concepts that they themselves contribute to 

collaborative interactions and (b) between their own contributions and those of their 

collaborators. These links are operationalized in models of collaborative learning as 

connections between concepts. To accomplish this, Suthers et al. [2] suggest that in 

collaborative discourse, common ground can be represented in terms of the recent 

temporal context for an utterance: that is, the common ground for the current utterance 

in a conversation is composed of the utterances that precede it back to some prior point 

in time. Because both manual construction and natural language processing techniques 

face challenges in determining recent temporal context for each utterance at scale 

[3][4], models of collaborative learning approximate the appropriate recent temporal 
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context for utterances using a fixed-length moving window or using a probabilistic 

function. Each of these approaches has advantages and disadvantages in approximating 

recent temporal context. Fixed windows are easy to compute but may over- or under-

count connections in the model. Probabilistic models may, in some settings, be more 

accurate, but they can be more difficult to implement. 

In this study, I examine one technique for modeling cognitive connections in 

collaborative contexts, Epistemic Network Analysis (ENA), which has been 

implemented primarily with a fixed-length moving window to operationalize recent 

temporal context. Using one dataset, I examine whether a novel approach, ENA with a 

probabilistic model, better models the process of collaborative learning. 

2 Theory 

2.1 Modeling Collaborative Learning 

One important component of learning is the process by which individual learners work 

together to develop cognitive connections between concepts [5][6]. For example, 

Suthers et al. [2] refer to a particular type of connection in collaborative learning, 

uptake, as the process of one student contributing to the conversation based 

contributions of another. Clark [7] in turn argues that critical to the notion of uptake is 

the concept of common ground: the shared knowledge and assumptions across 

individuals, groups, and communities that are relevant to a specific turn of talk. As 

Suthers and Desiato [8] suggest, in collaborative discourse, common ground can be 

operationalized as recent temporal context: that is, the common ground for some 

current utterance in a conversation is composed of the utterances that precede it back 

to some prior point in time.  

Thus, Swiecki [1] argues that interactivity and interdependence are fundamental to 

collaborative learning. Interactivity refers to the process through which learners co-

construct knowledge by responding to others’ opinions or actions. This interactivity 

results in interdependence—that is, one learner’s utterances or actions influence others. 

In other words, all learning can be characterized, at least in part, as a process of making 

connections between ideas. In collaborative learning, those connections are made from 

a learner’s ideas to some collaborative recent temporal context. 

2.2 Quantifying Interdependent Connections 

In cognitive science, scholars make two claims about how humans understand 

information and make connections within the common ground. Each of these claims 

leads to a different approach to modeling connections. 

Counting cognitive connections based on presence or absence of events within the 

window. The first claim is that people have limitations on their capacity for processing 

information. [9] argues that a speaker engages a listener’s attention during a 

conversation by dividing big chunks of information into smaller, logically connected 
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units, which is termed as intonation units. To construct appropriate intonation units, a 

speaker needs to make an assumption at each moment about how much understanding 

they share with others in a conversation. Thus, there is an underlying assumption about 

what each person thinks the others can remember in the process of conversational 

uptake. Based on this framework, researchers operationalize cognitive connections 

within the recent temporal context using a fixed-length moving window. The window is 

fixed on the assumption that all of the participants make a similar assumption about 

other participants’ shared understanding. The window is moving in the sense that each 

line in the dataset has a window that represents its recent temporal context. Within each 

window, researchers develop indicators to described learning patterns, such as whether 

or not two events co-occur within the window. 

Weighting cognitive connections using the probability of one utterance referring 

to another. In addition to how much information a person can hold within their short-

term memory, previous research has investigated how likely it is that a person can retain 

some piece of information in short-term memory as time passes. For example, 

Ebbinghaus [10] studied rates of retention and forgetting based on a test of vocabulary 

recall, resulting in an exponential decay function. Other research on information 

retention models forgetting based on power functions [11][12]. Regardless of what 

function we use to model information retention, this perspective suggests that the 

probability of recalling information decays as time passes. Rather than claiming the 

connection strength between two codes is either 1 or 0, I propose to quantify the 

connection strength as a function of distance between the two lines where codes occur. 

To operationalize connection strength, I use a probabilistic function to model recent 

temporal context in collaborative discourse. The probabilistic function estimates the 

probability of one utterance referring to another based on the distance between two 

utterances.  

 

2.3 Epistemic Network Analysis 

Epistemic Network Analysis (ENA) is an approach to quantifying connections between 

concepts, behaviors and other elements to model collaborative learning [13]. ENA takes 

coded data generated by individuals during interactivity and represents connections 

among those codes as a network structure. Specifically, ENA computes connections 

based on the presence of the codes in each line of data and the codes in the previous 

lines of data that constitute its recent temporal context. That is, ENA currently is 

operationalized based on the first approach in 2.2. Using this approach to model a 

dataset, we need to construct a window for each utterance. However, the challenge is 

that not every line has the same window size. Ruis et al. [14] proposed to resolve this 

issue by choosing a fixed length for the window as a best approximation. They argue 

that the window size needs to be sufficient to capture the recent temporal context for 

95% of utterances in a dataset and minimize improperly-included connections within 

the fixed size of the window. As Shaffer [13] argues, a fixed window is a good 

approximation because even though some responses are not direct responses to 

preceeding lines, they are part of the common ground. This kind of response is called a 
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dispreferred response [15], a contribution that is “not an expected and direct reply to 

prior referents” ([13], p. 159). Therefore, even if covered by the fixed-length window, 

such dispreferred responses are still in the common ground and should be included in 

the recent temporal context. 

In what follows, I refer to these two requirements for a fixed window model as the 

maximum window postulate and the dispreferred response postulate. The first says that 

we should choose a large fixed-length window to cover the recent temporal context for 

majority of utterances; and the second says that in choosing a large fixed window, we 

believe that dispreferred responses should be included in the recent temporal context. 

Problems with Fixed-length Window. The fixed-length window method thus depends 

on the dispreferred response postulate. That is, dispreferred responses should always 

be included in the recent temporal context for an utterance. However, it is not clear that 

this is always true. If we ignore the maximum window postulate and choose a shorter 

window, we will exclude lines which should be in the recent temporal context. That is, 

we produce a Type II error or a false negative, where we do not count connections 

which are relevant. If we follow the maximum window postulate, then we may include 

irrelevant responses within the window. That is, we produce a Type I error or a false 

positive, where we count connections which are actually irrelevant. This happens 

because, in this case, the dispreferred response postulate is not always valid: we cannot 

consider all dispreferred responses as relevant context for future utterances. Thus, 

situations where the dispreferred response postulate fails necessarily result in either 

Type I or Type II errors: either overcounting (Type I) or undercounting (Type II) 

connections.  

Miscounting connections in an ENA model can lead to interpretive misalignment: 

the ENA model may include irrelevant connections or exclude relevant connections, 

which means the model is not aligned with a qualitative understanding of the data. 

Overcounting or undercounting connections also introduces error when constructing an 

ENA model, which may result in lower goodness of fit or lower the amount of variance 

explained.  

2.4 Research Question 

To address the issue of fixed window approach, I test whether ENA with a probabilistic 

approach provides a better model of collaborative discourse than a fixed-length 

window. In this study, I apply both ENA with a fixed-length window model (ENA-W) 

and ENA with  a probabilistic model (ENA-P) to analyze the collaborative problem-

solving processes in an engineering design training program, which consists of two 

primary learning activities: in the first half, student project teams explore a design space 

using a single material component, and in the second half, they attempt to create an 

optimal design using any available material. I compare these two models to answer the 

following research questions:  

(1) Does ENA-P exhibit better interpretative alignment between qualitative and 

quantitative results than ENA-W?  
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(2) Does ENA-P have a better goodness of fit than ENA-W?  

(3) Does ENA-P explain more variance between the two learning activities than 

ENA-W? 

3 Methods 

3.1 Dataset and Codebook 

The dataset was collected from the virtual internship Nephrotex [16]. Nineteen 

engineering students participated in an online training simulation in which they 

designed a nanotechnology-based membrane for kidney dialysis machines at a fictitious 

company. The training program was divided into two activities. The goal for the first 

half was to help students explore the design space and learn the functional 

characteristics of a single material by analyzing graphs and data and conducting tests. 

The goal for the second half was to help students optimize the performance of a design 

across multiple parameters using a range of materials and other components. During 

these two activities, students communicated with their peers and a mentor through a 

persistent online chat tool that was a part of the simulation environment. To analyze the 

collaborative processes in this learning environment, researchers collected all 1443 chat 

posts across the 10 different groups in the simulation (5 in the first half, and 5 jigsawed 

groups in the second half). The chat posts were labeled by username and group number 

and arranged in a chronological order within each group.  

To analyze the collaborative discourse, Siebert-Evenstone et al. [17] developed and 

validated a coding scheme with six codes: (1) PERFORMANCE PARAMETERS: criteria 

used to assess the design prototype including cost, marketability, reliability, flux, and 

blood cell reactivity; (2) DESIGN-BASED DECISION MAKING: processes of making design 

decisions, including prioritization and tradeoffs; (3) CLIENT AND CONSULTANT 

REQUESTS: concerns or needs of stakeholders in the simulation including suggestions 

and requirements for the final product; (4) DATA: specific technical or numeric 

information; (5) COLLABORATION: teamwork during decision making, including 

discussion of a team’s collective action (e.g., “we need to…”); (6) TECHNICAL 

SPECIFICATIONS: characteristics of design prototypes, including selected materials, 

transformation processes, surfactant, and carbon nanotube precentage. All 6 codes were 

validated by two trained human raters (for each code, kappa > 0.83, ρ(0.65) < 0.05). 

3.2 ENA 

ENA takes binary-coded data as input and then constructs a fixed-length moving 

window to calculate connection counts between codes for each utterance. For each unit, 

ENA aggregates connection counts by summing across all windows for that unit’s 

utterances. The aggregated connection counts are represented as an adjacency vector. 

ENA normalizes and centers the adjacency vectors, and the terms are used as line 

weights between nodes in the network representation. ENA performs a dimensional 

reduction technique to reduce the high-dimensional adjacency vectors to a low-

dimensional space. In this study, the first dimension was constructed using a means 
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rotation that maximizes the variance between the two primary activities in the 

simulation, and the second dimension was constructed using singular value 

decomposition, which maximizes variance among all units. ENA optimizes node 

positions in the resulting low-dimensional space to align the network centroids (based 

on line weights) with ENA scores (based on the dimensional reduction). To measure 

how aligned centroids and ENA scores are, ENA calculates the goodness of fit using 

Pearson’s r correlation between these two values on all dimensions. 

In the network representation, codes are represented as nodes, while connection 

strengths are represented by edge thickness and saturation. To compare patterns of 

connection-making in the first-half and second-half of activities, ENA creates a 

visualization called difference plot. That is, ENA calculates the mean line weights for 

units in each simulation activity separately and subtracts one group of mean line 

weights from the other, visualizing the differences with the color and thickness of the 

edges.  

While network visualizations provide insights about different patterns of making 

connections between groups, ENA scores can be used to test whether these differences 

are statistically significant. In this analysis, I regressed the ENA scores from two 

different ENA models on a grouping variable of two activities. To test whether the 

variances explained by ENA-W and ENA-P are significantly different, I bootstrapped 

units and computed both regressions repeatedly, which created an empirical distribution 

of R2 for both models. I applied Fischer’s Z transformation and used a Monte Carlo 

rejection method to determine whether the difference in variance explained by the two 

ENA models was significant. 

As a unified approach to data analysis, ENA integrates both qualitative interpretation 

and quantitative representation of data. Researchers establish interpretive alignment by 

showing that the conclusions derived from an ENA model is aligned with some 

qualitative interpretation of the original data. In my study, I checked the interpretive 

alignment in two ways: 

• Individual-Level: I identified two segments of discussion and manually evaluated 

whether ENA-P addresses the potential over- and under-counting problems 

introduced by ENA-W.  

• Site-Level: I evaluate whether the connection strengths in ENA-W or ENA-P 

provides a better representation of the expected outcomes based on the learning 

objectives for two activities. 

3.3 Construction of ENA-W and ENA-P 

Determining an Appropriate Window Size. To determine the window size for ENA-

W, I adopted the method proposed by [14]. Two researchers randomly sampled 177 

utterances from Nephrotex chat logs and determined the furthest referent for each 

utterance using social moderation. As proposed by [14], I identified the window size to 

be 7 utterances, accounted for recent temporal context in more than 95% of the sampled 

lines.  
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Determining an Appropriate Probabilistic Function. We derived the probabilistic 

function based on the same 177 samples. We define the sampled lines as an ordered set 

of lines (𝑙1, 𝑙2, … , 𝑙177). Each line 𝑙𝑖 has its furthest referent 𝑙𝑥𝑖
. Based on our definition 

of the recent temporal context, each line is related to its referents and itself. Thus, we 

operationalized the window to represent the recent temporal context is an ordered set 

of lines, 𝑊𝑖 = (𝑙𝑥𝑖
, 𝑙𝑥𝑖+1, … , 𝑙𝑖), where |𝑊𝑖| = 𝑖 − 𝑥𝑖 + 1 (that is, the number of lines 

from 𝑙𝑥𝑖
 to 𝑙𝑖, inclusive). For each line, 𝑙𝑖, we identified its furthest referent, 𝑙𝑥𝑖

. We 

then constructed a histogram of window sizes, |𝑊𝑖|, as shown in Fig. 1. 

 

 

Fig. 1. Histogram for |𝑾𝒊| based on 177 Sampled Lines 

The height of bars in the histogram indicates the total counts of a referring line 𝑙𝑟 

with the window length of 𝑊𝑖. We define the counts of referring lines given a window 

length 𝑘 as 𝑎𝑘 = |{𝑖 | 𝑤𝑖 = 𝑘}|. Let 𝑒 be the maximum window length, 𝑒 = max (Wi). 

The frequency distribution of window sizes lets us estimate the probability of a 

referring line (𝑙𝑖) is related to any proceeding lines (𝑙𝜆), 𝜆 < 𝑖. We can also define the 

probability function 𝜋(𝑖 − 𝜆) = 𝑃(|𝑊𝑖| > 𝑖 − 𝜆) , which estimates the probability of 

the prior line 𝑙𝜆 is related to the referring line 𝑙𝑖. Thus, the frequency distribution of 

window sizes for all referring lines can be written as: 

𝜋(𝑖 − 𝜆) = 𝑃(|𝑊𝑖| > 𝑖 − 𝜆) = 1 −
∑ 𝑎𝑗

𝑖−𝜆
𝑗=0

∑ 𝑎𝑘
𝑒
𝑘=1

, 𝑎0 ≡ 0. 

4 Results 

4.1 Research Question 1: Interpretive alignment 

Individual-Level Interpretive Alignment. In this section, I examined two examples 

from one student, Lily, who participated in the training program: one example 

illustrates that ENA-W may overcount connections, and the other illustrates that ENA-

W may undercount connections. In both examples, I conducted a qualitative analysis 

on the recent temporal context of one utterance and manually derived the adjacency 

matrix of connection strengths using ENA-W and ENA-P.  

Overcounting Problem. In the following example, a group of students is discussing 

different prototypes and evaluating their performance in preparation for choosing a 

final design: 
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Line Team Member Utterance 

1 Abby sounds good 

2 Jina 

Well the only other prototype i would consider is the one that was 

comprised of PMMA, vapor, using a hydrophilic sufractant, with a 

nanotube % of 4.0% 

3 Jina 
this cost $100 dollars per unit, sold 500,000, had a reliability of 12 

hours with a flux of 15 but a blood cell reactvity of 54.44 

In line 1, Abby comments on a previous design, indicating that it “sounds good” as 

a candidate for the final prototype. Then Jina (line 2) proposes another candidate design 

“comprised of PMMA, vapor, using a hydrophilic sufractant, with a nanotube % of 

4.0%.” That is, she lists TECHNICAL SPECIFICATIONS as inputs for the design. In line 3, 

Jina continues by describing the PERFORMANCE PARAMETERS of the prototype, 

including cost, marketability, reliability, flux and blood cell reactivity. She further adds 

that the performance on the first four parameters is great, “but … blood cell reactivity” 

is low at “54.44”.  

After summarizing the TECHNICAL SPECIFICATIONS and PERFORMANCE PARAMETERS 

of her prototype, Jina suggests that her teammates type the values of the PERFORMANCE 

PARAMETERS for their prototypes in the chat (line 4), which will be used to justify their 

design choices:  

Line Team Member Utterance 

4 Jina If you guys could, can you type out the the information from the 

prototypes on chat. We need it for the justifications 

5 Bob Flux: 29 

BCR: 65.56 

Reliability: 9 

Marketability: 900,000 

6 Abby This resulted in a reliability of 8 hours, marketability of 600,000 

units, a flux rate of 13m^3/m^2-day, and a low Bloodcell reactivity 

of 21.11. In total this prototype costs $130 dollars per unit 

7 Lily The BCR Type: Reliability-5, Market-800,000. Flux - 23. BCR- 10. 

Cost -$150 

In response to Jina’s proposal, Bob (line 5), Abby (line 6), and Lily (line 7) all enter 

the numerical values for the PERFORMANCE PARAMETERS of their prototypes. That is, 

they summarize how each of their prototypes performed on the metrics that the 

stakeholders care about.  

Jina’s response in line 4 is thus a dispreferred response. The previous discussion 

(lines 1-3) was focused on the TECHNICAL SPECIFICATIONS of the prototypes that each 

team member designed and tested. Jina (line 4) then abruptly shifted the discussion to 

the PERFORMANCE PARAMETERS of the prototypes, effectively beginning a new 

discussion. 

How, then, should we model Lily’s utterance in line 7? Based on the fixed window 

with 7 utterances, all lines in this segment, including any dispreferred responses, are 

relevant context because they are within the window, which in turn quantifies the 

connection between TECHNICAL SPECIFICATIONS and PERFORMANCE PARAMETERS as 1. 
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In other words, the window models a connection between PERFORMANCE PARAMETERS 

and  TECHNICAL SPECIFICATIONS for line 7 even though qualitatively, Lily was not 

making that connection. 

If we use a probabilistic function to quantify connection strength, line 7 comes 5 

lines after line 2. Thus, the connection between Lily’s reference to PERFORMANCE 

PARAMETERS in line 7 and Jina’s reference to TECHNICAL SPECIFICATIONS is weighted 

by 𝜋(7 − 2) =  𝜋(5) = 𝟎. 𝟏𝟎𝟕. Thus, the probabilistic model also shows a connection, 

but now with a weakened strength of only 0.107. This adjustment of connection 

strength suggests that the probabilistic model is a better representation—or perhaps in 

this case, a less imperfect representation—of Lily’s response. 

Undercounting Problem. In the following example, which comes at the beginning of 

the second half of the training program, students have switched groups. In their new 

group they introduce themselves, and then Abby describes (line 1) the conclusion by 

their team in the first half, suggesting that it was not particularly useful for designing a 

final prototype: 

Line Team Member Utterance 

1 Abby basically the only thing i was able to conclude from my 

surfactant was that the BCR was constant in all of the 

prototypes.  was 43.33% 

2 Jina The group i had previously worked with came up with a 

prototype that gave us an all around great dialyzer. It was 

comprised of PMMA for the material, Used the process of 

Vapor, and used a biological sufractant, and had a nanotube 

percentage of 1.5%. 

3 Jina This resulted in a reliability of 8 hours, marketability of 

600,000 units, a flux rate of 13m^3/m^2-day, and a low 

Bloodcell reactivity of 21.11. In total this prototype costs 

$130 dollars per unit 

4 Abby submit that protoype label in Team1 Batch1 

5 Abby do we want to stick to a specific material 

6 Lily I think we should include one prototype of each material. 

7 Abby okay so each of us creates one from our material 

8 Jina Well what was the best one out of the previous prototypes for 

each material? It makes sense to do the best ones overall for 

each. 

9 Lily well, change it up a bit. You can optimize your best result. 

Jina replies to Abby by reporting (line 2) the TECHNICAL SPECIFICATIONS for “an all 

around great dialyzer” that their group tested in the first half of the training program. 

Then, she provides (line 3) DATA about the PERFORMANCE PARAMETERS for her 

prototype. 

Abby replies by suggesting (line 4) that the team use one of their prototypes from 

the first half of the training program in their next submission (“submit that prototype 

label in Team1 Batch1”). She asks (line 5) whether the whole team should use one 
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material for the final submission. Lily replies (line 6) to Abby’s question, saying that 

each person on the team should test a prototype for a different material. Abby confirms 

(line 7) that she understands what Lily had said: each student on the new team should 

design a prototype using the material studied by their old team. In response to Lily and 

Abby, Jina suggests (line 8) that they should use the “best ones overall” from their 

previous team. However, Lily disagrees and suggests (line 9) that they should consider 

changing the design from the previous team to achieve the best result possible. 

This final comment about DATA (the “best result” of a design using one material) is 

thus a response to the previous 8 lines where students were deciding how to move to 

the next phase of their design process. More specifically, it relates to Jina’s description 

(line 2) of the TECHNICAL SPECIFICATIONS for one specific device and its PERFORMANCE 

PARAMETERS (line 3). 

But notice that with a window size of 7, DATA (line 9) is connected to PERFORMANCE 

PARAMETERS (line 3)—which is aligned with this qualitative analysis of the example. 

However, it is not connected to TECHNICAL SPECIFICATIONS (line 2), even though they 

are part of what would have been read as a single continuous comment by the same 

student (Jina). That is, the connection calculated by ENA-W is 0. In other words, the 

window excludes a connection between DATA and  TECHNICAL SPECIFICATIONS for line 

9 even though qualitatively, Lily was making that connection. 

If we use a probabilistic function to quantify connection strength (see 3.2.1), line 9 

comes 7 lines after line 2. Thus, the connection between Lily’s DATA in line 9 and Jina’s 

TECHNICAL SPECIFICATIONS is weighted by 𝜋(9 − 2) =  𝜋(7) = 0.034. In other words, 

in this example, a qualitative analysis shows that Lily was making a non-

zeroconnection between DATA and TECHNICAL SPECIFICATIONS.  

In summary, the probabilistic model (1) reduces the type I error by decreasing the 

connection strength between PERFORMANCE PARAMETERS and TECHNICAL 

SPECIFICATIONS, which is overcounted by the fixed-length window model and (2) 

reduces the type II error by increasing the connection strength between DATA and 

TECHNICAL SPECIFICATIONS, which is undercounted by the fixed-length window model. 

These patterns persist throughout Lily’s network throughout the training program: The 

connection strength between PERFORMANCE PARAMETERS and TECHNICAL  

SPECIFICATIONS is 0.70 in the ENA-W model, which decreases to 0.67 in the ENA-P 

model; the connection strength between DATA and TECHNICAL. SPECIFICATIONS is 0.42 

in the ENA-W model, which increases to 0.51 in the ENA-P model. 

Site-Level Interpretive Alignment. To assess interpretive alignment at the site level, 

I constructed an ENA-W and ENA-P model based on the chats from the whole class 

during the training program. Recall that the training program was designed to help 

students learn two abilities: the goal of the first half is to explore the performance of a 

single material based on different data sources (e.g., technical reports and graphs) and 

experimentation, while the goal of the second half is to optimize the performance (i.e., 

cost, safety, reliability, etc.) of a design prototype using any available material.   

Thus, we would anticipate that students in the first half of the training program would 

make more connections between DATA and TECHNICAL SPECIFICATIONS because they 

are spending more time reading and discussing technical reports, collecting preliminary 
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data, and constructing graphs to understand various design attributes for one single 

material. Students in the second half are more likely to make connections between DATA 

and PERFORMANCE PARAMETERS, as they are designing and testing prototypes to better 

understand the design space and maximize device performance across a range of 

parameters.  

According to Figure 5, the subtracted plot of ENA-P better aligns with expected 

difference between the first-half and the second-half of the training, based on the 

learning objectives of two halves.  For example, students are expected to make more 

connections between DATA and TECHNICAL SPECIFICATIONS in the first-half of training. 

However, the edge between DATA and TECHNICAL SPECIFICATIONS in the subtracted plot 

for ENA-W is very weak, indicating little difference in the overall strength of that 

connection between the two halves: the edge weights differ by only 0.48. However, the 

ENA-P model shows that students made relatively more connections between DATA 

and TECHNICAL SPECIFICATIONS in the first half of training: the edge weights differ by 

3.08. In other words, the ENA-W model does not reflect an expected difference in 

student discourse between the two halves of the simulation, while the ENA-P model 

does. 

Similarly, students are expected to make more connections between DATA and 

PERFORMANCE PARAMETERS in their second-half, which is reflected in the subtracted 

plot of ENA-W: the edge weights differ by 1.60. However, the edge weight of this 

connection in ENA-P model shows even more salient difference, according to the 

thicker and darker blue edge. That is, the difference of this connections between two 

halves is larger in ENA-P: the edge weights differ by 4.01. In other words, the ENA-P 

model manifest and shows a more salient difference in network representation, 

compared to ENA-W.  

 

 



12 

 

 
 

Fig. 5. Subtracted ENA Plots and Group ENA Plots Using Fixed Window Approach and 

Probabilistic Function 

Thus, in the individual-level, the individual network of Lily using ENA-P is more 

aligned with the qualitative evidence; in the site-level, the subtracted plot using ENA-

P is more aligned with the  expected difference based on the design and intervention of 

the. Thus, ENA-P models collaborative learning process and achieves a better 

interpretive alignment, compared to ENA-W.  

4.2 Research Question 2: Evaluation of ENA Models Using Goodness of fit  

As described in 3.2., goodness of fit is a measure of discrepancy between dual 

representations for units. A higher goodness of fit provides a stronger warrant for the 

interpretation of the ENA scores based on the individual network. While goodness of 

fit for ENA-W is 0.93, goodness of fit for ENA-P is higher at 0.96. Thus, ENA-P has a 

better co-registration between dual representations than the ENA-W model. 

4.3 Research Question 3: Evaluation for ENA Models using Regression 

Analysis and Variance Explained 

As described in 3.2., I applied a two bivariate regression models to predict ENA scores 

on the primary axis for the ENA-W and ENA-P and based on the condition of first-half 

and second-half of the game. Condition of first versus second half significantly predicts 

ENA scores for both models. However, the variance explained by ENA-W (R2 = 0.22) 

is lower than the variance explained by ENA-P (R2= 0.38).  
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To explore whether the variance explained is significantly different between two 

models, as described in section 3.2., I bootstrapped units from the whole set and ran the 

regression models repeatedly. With 1,000 iterations of bootstrapping, I calculated the 

95% confidence interval (CI) for the R2 of both models. The results show that the ENA-

W model (95% CI ∈ [0.20, 0.24]) has significantly lower variance explained than the 

ENA-P model (95% CI ∈ [0.39, 0.43]). Thus, ENA-P has more explanatory power in 

accounting for differences between students in the first-half and second-half of the 

training program 

5 Discussion 

This study explored two approaches to modeling collaborative learning in which the 

unit of analysis is individuals-in-a-group. Specifically, it compared ENA models 

constructed using two different methods for quantifying the strength of connections in 

collaborative discourse: (a) a fixed-length window approach (ENA-W), which 

quantifies connections as either present or absent within a set number of turns of talk; 

and (b) a novel probabilistic function approach (ENA-P), which estimates the 

likelihood that a connection is present. I hypothesized that ENA-P would better address 

the problem of over- or undercounting connections—that is, incorrectly quantifying 

connection strength—when a fixed-length window is used. To test this hypothesis, I 

conducted a pilot study to test the feasibility of ENA-P relative to ENA-W using data 

from 19 students who participated in a collaborative engineering design training 

program.  

I compared ENA-P with ENA-W using three criteria: interpretive alignment, 

variance explained between groups, and model goodness of fit. Both models performed 

well, but ENA-P achieved slightly higher goodness of fit, explained significantly more 

variance, and was better aligned with both qualitative interpretation and expected 

learning processes based on the design of the training program. At the individual-level, 

given two discourse segments involving one particular student, ENA-P better 

quantified the connections overcounted or undercounted by ENA-W. Furthermore, this 

pattern persisted when all connections were aggregated for this student. At the site-

level, the ENA-P model better reflected expected differences in student discourse 

between the first and second halves of the training.  

This pilot study suggests that in at least some collaborative learning contexts, ENA-

P may perform better than ENA-W; thus, ENA-P is a feasible method for quantifying 

connections in ENA models. While ENA-P models may perform better in some 

circumstances, they are also more difficult to construct. For example, in this study, we 

manually identified a probabilistic function based on an empirical distribution, which 

takes more time and effort. There are also other possible probabilistic models, such as 

exponential functions or power functions; thus, the findings of this study suggest that 

such approaches should be tested in future work .  

In summary, while ENA-P performs slightly better than ENA-W based on the pilot 

test, both ENA-W and ENA-P are feasible approaches to model collaborative learning.  
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